To stress test [4.6], I tasked 16 agents with writing a Rust-based C compiler, from scratch, capable of compiling the Linux kernel. Over nearly 2,000 Claude Code sessions and $20,000 in API costs, the agent team produced a 100,000-line compiler that can build Linux 6.9 on x86, ARM, and RISC-V.
This was a clean-room implementation (Claude did not have internet access at any point during its development); it depends only on the Rust standard library. The 100,000-line compiler can build a bootable Linux 6.9 on x86, ARM, and RISC-V. It can also compile QEMU, FFmpeg, SQlite, postgres, redis, and has a 99% pass rate on most compiler test suites including the GCC torture test suite. It also passes the developer's ultimate litmus test: it can compile and run Doom.
So, while this experiment excites me, it also leaves me feeling uneasy. Building this compiler has been some of the most fun I’ve had recently, but I did not expect this to be anywhere near possible so early in 2026. The rapid progress in both language models and the scaffolds we use to interact with them opens the door to writing an enormous amount of new code.
All this and with a fairly naive team design afaict. I imagine you could nominate a team lead and it doesn't sound like they did much work on crafting a memory system.